A novel view of suprathreshold stochastic resonance and its applications to financial markets
نویسندگان
چکیده
We introduce an original application of Suprathreshold Stochastic Resonance (SSR). Given a noise-corrupted signal, we induce SSR in effort to filter the effect of the corrupting noise. This will yield a clearer version of the signal we desire to detect. We propose a financial application that can help forecast returns generated by big orders. We assume there exist return signals that correspond to big orders, which are hidden by noise from small scale traders. We induce SSR in an attempt to reveal these return signals.
منابع مشابه
A Novel Charging Plan for PEVs Aggregator Based on Combined Market and Network Driven Approach
With the large-scale production of plug-in electric vehicles (PEVs), a new entity, the PEV fleet aggregator manages charging and discharging processes of the vehicles. The main objective of an individual aggregator in interaction with electricity markets is maximizing its profit. In this paper, the performance of this aggregator in day-ahead and real-time electricity markets, considering (a) cu...
متن کاملEnhanced coding for exponentially distributed signals using suprathreshold stochastic resonance
Our previous work on stochastic resonance (SR) in threshold based systems proved that the SR effect is dependent on the nature of the input signal distribution; more specifically, for certain types of signal distribution SR is not observed [Das A, Stocks NG, Nikitin A, Hines EL. Quantifying stochastic resonance in a single threshold detector for random aperiodic signals. Fluctuation Noise Lett ...
متن کاملConfidence Interval for Solutions of the Black-Scholes Model
The forecast is very complex in financial markets. The reasons for this are the fluctuation of financial data, Such as Stock index data over time. The determining a model for forecasting fluctuations, can play a significant role in investors deci-sion making in financial markets. In the present paper, the Black Scholes model in the prediction of stock on year later value, on using data from mel...
متن کاملSimulation of Long-term Returns with Stochastic Correlations
This paper focuses on a nonlinear stochastic model for financial simulation and forecasting based on assumptions of multivariate stochastic correlation, with an application to the European market. We present in particular the key elements of a structured hierarchical econometric model that can be used to forecast financial and commodity markets relying on statistical and simulation methods. The...
متن کاملMachine learning algorithms for time series in financial markets
This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...
متن کامل